月別アーカイブ: 2015年1月

リアルタイムクロック RTC-8564NB で起動する

ESAの彗星探査機「フィラエ」が電力喪失、スリープモードに移行

探査機にとって電力は命です。 フィラエは太陽光パネルに光が当たれば、復活の可能性がありますが、電力源としてバッテリーしか持たないハウスローバーは、それを消費してしまえば、活動できなくなります。 少しでも長くバッテリーを持続させるための制御に利用する計画で、RTCを搭載しました。

RTC-8564NB

RTC-8564NBは、分、時、日、曜日を指定できるアラームと0~255秒(または分)を設定できるタイマーを内蔵しています。 その出力としてINT端子がLowレベルとなるため、Raspberry Piのリセット端子と接続することで、シャットダウン状態のシステムを起動することができます。

RTC_INT配線

RTCのINT端子部分の配線

 

P6の1番ピンへ接続

P6の1番ピンへ接続

I2C接続後、ハードウェアクロックデバイスとして登録します。

/etc/modules-load.d/rasberrypi.conf へ
rtc-pcf8563 を、追加
echo pcf8563 0x51 > /sys/class/i2c-adapter/i2c-1/new_device を、実行する。

これで、hwclockコマンドが使用できるようになります。

ところが、システムモジュールとして登録すると、I2Cコマンドで直接操作ができなくなります。 (pythonでは可能なようですが…)

今回は、アラーム設定を直接操作したいので、システムモジュールには登録しません。 (システムモジュールとして登録されていて、一時的に外す場合は modprobe -r rtc-pcf8563 を実行)

PHPで、RTCを設定するスクリプトを作成しました。

<?php
//RTC SET v1.1 2015.1.11 spacelab
//ハードウェアクロックとして設定されている場合は
//タイムゾーンはUTCが使用されています。
//本スクリプトはJSTとして動作しますので、事前に
//時刻設定を行って下さい。

date_default_timezone_set('Asia/Tokyo');
setlocale(LC_ALL,"ja_JP.UTF-8");

$i2cadd = 0x51; //デバイススレーブアドレス

$msk3 = 0x07;
$msk5 = 0x1f;
$msk7 = 0x3f;
$msk8 = 0x7f;
$bit2 = 0x02;

if($argv[1]){ //パラメータチェック
 $sw = $argv[1];
}else{
 $sw = "-d";
}

switch ($sw){
 case "-d":
 //RTC時刻の取得
 //レジスタの読み込み
 $r_sec = hexdec(exec("i2cget -y 1 $i2cadd 0x02"));
 $r_min = hexdec(exec("i2cget -y 1 $i2cadd 0x03"));
 $r_hou = hexdec(exec("i2cget -y 1 $i2cadd 0x04"));
 $r_day = hexdec(exec("i2cget -y 1 $i2cadd 0x05"));
 //$r_wek = exec("i2cget -y 1 0x51 0x06");
 $r_mon = hexdec(exec("i2cget -y 1 $i2cadd 0x07"));
 $r_yea = substr(exec("i2cget -y 1 $i2cadd 0x08"),2) + 2000;

 //不要ビットをマスク
 $r_sec = dechex($r_sec & $msk8);
 $r_min = dechex($r_min & $msk8);
 $r_hou = dechex($r_hou & $msk7);
 $r_day = dechex($r_day & $msk7);
 $r_mon = dechex($r_mon & $msk5);

 $timestamp = mktime($r_hou,$r_min,$r_sec,$r_mon,$r_day,$r_yea,0);
 echo strftime("%c\n",$timestamp);
 break;

 case "-s":
 //RTC時刻をシステムタイマーと同期
 $r_yea = date('y');
 $r_mon = date('m');
 $r_day = date('d');
 $r_wek = date('w');
 $r_hou = date('H');
 $r_min = date('i');
 $r_sec = date('s');

 exec("i2cset -y 1 $i2cadd 0x08 0x".$r_yea);
 exec("i2cset -y 1 $i2cadd 0x07 0x".$r_mon);
 exec("i2cset -y 1 $i2cadd 0x06 0x".$r_wek);
 exec("i2cset -y 1 $i2cadd 0x05 0x".$r_day);
 exec("i2cset -y 1 $i2cadd 0x04 0x".$r_hou);
 exec("i2cset -y 1 $i2cadd 0x03 0x".$r_min);
 exec("i2cset -y 1 $i2cadd 0x02 0x".$r_sec);

 $timestamp = mktime($r_hou,$r_min,$r_sec,$r_mon,$r_day,$r_yea,0);
 echo strftime("%c\n",$timestamp);
 break;

 case "-w":
 //RTCをシステム時刻に設定
 //レジスタの読み込み
 $r_sec = hexdec(exec("i2cget -y 1 $i2cadd 0x02"));
 $r_min = hexdec(exec("i2cget -y 1 $i2cadd 0x03"));
 $r_hou = hexdec(exec("i2cget -y 1 $i2cadd 0x04"));
 $r_day = hexdec(exec("i2cget -y 1 $i2cadd 0x05"));
 //$r_wek = exec("i2cget -y 1 0x51 0x06");
 $r_mon = hexdec(exec("i2cget -y 1 $i2cadd 0x07"));
 $r_yea = substr(exec("i2cget -y 1 $i2cadd 0x08"),2) + 2000;

 //不要ビットをマスク
 $r_sec = dechex($r_sec & $msk8);
 $r_min = dechex($r_min & $msk8);
 $r_hou = dechex($r_hou & $msk7);
 $r_day = dechex($r_day & $msk7);
 $r_mon = dechex($r_mon & $msk5);

 $timestr = "$r_yea/$r_mon/$r_day $r_hou:$r_min:$r_sec";
 exec("date --set='".$timestr."'");
 echo exec("date")."\n";
 break;

 case "-as":
 //アラーム時刻の設定
 if($argv[2]){
 if($argv[2] =="m"){$a_cas = "0x09";}
 if($argv[2] =="h"){$a_cas = "0x0a";}
 if($argv[2] =="d"){$a_cas = "0x0b";}
 if($argv[2] =="w"){$a_cas = "0x0c";}
 if($argv[3]){
 $a_val = hexdec($argv[3]);
 }else{
 $a_val = 128;
 }
 exec("i2cset -y 1 $i2cadd $a_cas $a_val");
 exec("i2cset -y 1 $i2cadd 0x01 0x02");

 }else{
 //アラームセット
 exec("i2cset -y 1 $i2cadd 0x01 0x02");
 echo "アラームセットしました\n";
 }
 case "-a":
 //アラーム時刻の表示
 $a_set = hexdec(exec("i2cget -y 1 $i2cadd 0x01"));
 $a_min = hexdec(exec("i2cget -y 1 $i2cadd 0x09"));
 $a_hou = hexdec(exec("i2cget -y 1 $i2cadd 0x0a"));
 $a_day = hexdec(exec("i2cget -y 1 $i2cadd 0x0b"));
 $a_wek = hexdec(exec("i2cget -y 1 $i2cadd 0x0c"));

 if ($a_min >=128){$a_min_on = "無効 ";}else{$a_min_on = "有効 ";}
 if ($a_hou >=128){$a_hou_on = "無効 ";}else{$a_hou_on = "有効 ";}
 if ($a_day >=128){$a_day_on = "無効 ";}else{$a_day_on = "有効 ";}
 if ($a_wek >=128){$a_wek_on = "無効 ";}else{$a_wek_on = "有効 ";}

 $a_min = dechex($a_min & $msk8);
 $a_hou = dechex($a_hou & $msk7);
 $a_day = dechex($a_day & $msk7);
 $a_wek = dechex($a_wek & $msk3);

 echo "アラーム設定";
 if (dechex($a_set & $bit2) == 2){echo " 有効\n";}else{echo " 無効\n";}
 echo "Minuite: $a_min_on $a_min\n";
 echo "Hour : $a_hou_on $a_hou\n";
 echo "Day : $a_day_on $a_day\n";
 echo "Week : $a_wek_on $a_wek\n";
 break;

 case "-ar":
 //アラームリセット
 exec("i2cset -y 1 $i2cadd 0x01 0x00");
 echo "アラームリセットしました\n";
 break;

 case "-ts":
 //タイマーの設定
 if($argv[2]){
 exec("i2cset -y 1 $i2cadd 0x0f $argv[2]");
 if($argv[3]){
 exec("i2cset -y 1 $i2cadd 0x0e 0x83");
 }else{
 exec("i2cset -y 1 $i2cadd 0x0e 0x82");
 }
 exec("i2cset -y 1 $i2cadd 0x01 0x01");
 }else{
 echo "パラメータが足りません\n";
 }

 case "-t":
 //タイマー情報の表示
 $t_cnt = hexdec(exec("i2cget -y 1 $i2cadd 0x0e"));
 $t_dat = hexdec(exec("i2cget -y 1 $i2cadd 0x0f"));

 echo "タイマー設定";
 if ($t_cnt >=128){echo " 有効\n";}else{echo " 無効\n";}
 if ($t_cnt & 1){$clock = "分";}else{$clock = "秒";}
 echo "Timer: $t_dat $clock\n";
 break;

 case "-tr":
 //タイマーリセット
 exec("i2cset -y 1 $i2cadd 0x01 0x00");
 exec("i2cset -y 1 $i2cadd 0x0e 0x00");
 echo "タイマーリセットしました\n";
 break;

 case "-h":
 case "-?":
print <<< EOS
使用法: rtcset.php [機能] [設定値]...
機能:
 -d 現在時刻を表示する
 -s RTCをシステムクロックと同期する
 -w RTCの時刻をシステムクロックへ設定する
 -a アラームの設定状況を表示する
 -as [m,h,d,w] [値]
 アラームを有効に設定する
   [m,h,d,w] 分,時,日,曜日の項目を指定する
 [値] を省略すると該当項目を無効にする
 曜日の値:日=0 月=1 火=2 水=3 木=4 金=5 土=6
 例: 10時30分に設定
 -as h 10
 -as m 30
 -ar アラームをリセットし、無効に設定する
 -t タイマーの設定状況を表示する
 -ts [値] [秒,分]
 タイマーを有効に設定する
 [値] 0-255(秒) 単位: [初期値=秒,1=分]
 -tr タイマーをリセットし、無効に設定する
 -h,-? 使い方を表示
 -v バージョン情報を表示

EOS;
 break;

 case "-v":
 echo "rtcset.php version 1.1\nCopyright (C) 2015 space laboratory\n";
 break;

}
?>

php rtcset.php -h で、ヘルプが表示されます。 アラームやタイマーの設定をして、シャットダウンを実行することで、指定の時刻に起動させる事ができるようになりました。

アラーム出力はRaspberry Piにリセットをかけるものですので、メインのソフトウェアで定期的にタイマーを更新するような処理を行うことで、システム異常停止の際に復帰させる、ウォッチドッグタイマーの様な使い方もできると思います。

 

HMC6352 ディジタルコンパスモジュールの実験

遠隔操作の際、車体の向きを知ることはとても重要です。 ジャイロセンサーは相対的な向きですので、現在の方位を得るためにコンパスモジュールは搭載したいデバイスです。 また、応答速度や安定性が高ければ、旋回動作にもコンパスを使用することを検討したいと思います。

HMC6352 ディジタルコンパスモジュール

HMC6352 ディジタルコンパスモジュール

HMC6352 ディジタルコンパスモジュールは、磁気の測定値ではなく、方位として出力するデバイスですので、ホスト側の負荷も軽減できそうです。

接続はI2Cですので、4線でOKです。 電源は3.3Vを使用しました。

スレーブアドレスは、21hで認識しています。

i2cdetect_cmp

HMC6352には、計測モードが3種類ありますが、デフォルトのStandbyモードで試してみます。

i2cset -y 1 0x21 0x57        //ウェイクアップ
i2cset -y 1 0x21 0x41        //読み出しコマンド”A”
i2cget -y 1 0x21 0x43 w   //読み出し

あとは、コマンドA、読み出し を、繰り返す毎に数値が得られます。 PHPで、テストスクリプトを作成しました。

<?php
//HMC6352 コンパスモジュール testプログラム

exec("i2cset -y 1 0x21 0x57");		// ウェイクアップ

exec("i2cset -y 1 0x21 0x43");		//キャリブレーション開始
echo "キャリブレーションを実施して下さい。\n";
$input = fgets(STDIN,4096);			//キー入力待ち
exec("i2cset -y 1 0x21 0x45");		//キャリブレーション終了

while (1){
	exec("i2cset -y 1 0x21 0x41");	//読み出しコマンド"A"
	$cmp = exec("i2cget -y 1 0x21 0x43 w");	// 読み込み
	$cmp = hexdec(substr($cmp,-2).substr($cmp,2,2)) / 10;

	printf("方位 %.1f 度\n", $cmp);

	sleep(1);
}
?>

 

キャリブレーション実施待ちのフローは、はじめはなっかたのですが、キャリブレーションを行わないと数値が全く安定しません。 データシートには、2回転を20秒以上実施とあります。 実際には、1回転行えば、ほぼ、安定した計測値が得られますが、サーボや走行用モーターの動作中は数値が不安定になります。

モジュールの取り付け位置を、サーボやモーターから、離す必要がありますね。 絶対方位の取得は魅力なのですが、現状ではモーター動作時に旋回制御センサーとしての役割を担うことは厳しそうです。

 

2015年のロードマップ

迎春。

ハウスローバー 迎春スタイル

ハウスローバー 迎春スタイル

ハウスローバーの製作は、「きままに」 「無計画に」を、基本としているのですが、年頭にあたり「今年の製作予定と成果計画」を、おおまかに記録しておこうと思います。

前期

加速度センサーの検証

走行距離を知るために加速度センサーの実験を行います。 ジャイロセンサー同様、そこそこのCPU負荷とドリフトを考慮し、採用できるかを見極めます。 使えなければ、車輪へのフォトセンサーを取り付け等を検討します。

インターフェース基板の更改

実験の度に、ジャンパーを追加したりしていたので、基板上が煩雑になってきたのと、搭載するパーツが固まってきましたので、インターフェース基板を刷新します。 モータードライバ用ICも、別なものを使ってみたいと思います。

中期

コントロールWebページの更新

こちらは少し手を付けている部分でもあるのですが、加速度センサーの検証結果によって影響を受ける部分がありますので、その実験後になります。 情報表示をグラフィカルに、操作性の高いインターフェースにします。

シャーシ、ボディーの製作

ユニバーサルプレートのサンドイッチ構造は開発段階では機能的ですが、専用シャーシの製作は、まともな加工工具を持っていないので、なかなか着手できません。  素材も樹脂かアルミか検討中です。 既成品で良い物があれば飛びついちゃうかもしれません。(安易) 実は、IKEAのフードキーパーに製作意欲を掻き立てられる物があるんです。(かなり安易)

後期

ホストCPUの構成

Raspberry Piは、蓄積されたLinuxのソフトウェアが利用できる利点がありますが、電力消費が大きいのが欠点です。 また、ハードウェアに近い低レベルの制御には好適とは言えません。 開発を進めていると、ハードウェアの高速制御や割り込み制御を使いたい場面が度々あります。 計画としては、高レベルミッション用CPUとハードウェア高速制御用のCPUを搭載したいと考えています。 ハードウェア制御用CPUとしては、arduinoやPICが候補に挙がりますね。 Raspberry Piの+モデルは電源周りが改善されたようですが、更に消費電力を絞ったモデルが出ないか、期待したいところです。

自立性ソフトウェアの開発

外部からのコマンドにより動作する点は変わりませんが、部分的な自立性は随時組み込んでいく予定です。 例えば、コントロール信号が途絶えた時、「危険を避ける」 「バッテリー消費を抑える」などの制御ができるようにしていきたいと思います。

 

番外

「なんの役にも立たないハウスローバー」ですが、明確な(?)役割機能を持たせることを計画中です。 ヒントはこの動画ですが…。

ロシア無人地上戦闘車両 戦闘シミュレーション

 

さて、ロードマップとしてはかなり大雑把ですが、これらの計画、どこまで実行できるでしょうか?